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Abstract

Itis well known that any symplectic manifold4, £2) has an almost complex structurevhich is
compatible with(2. In this paper, we deal with the existence of compatible g&ir®) on nilpotent
Lie algebragy of dimension<6, J being anintegrablealmost complex structure. We prove that if
such a pair exists] must satisfy some extra conditions, namglynust be nilpotent in the sense
of [Trans. Am. Math. Soc. 352 (2000) 5405]. Associated to any such a compatible pair, there is a
pseudo-Kéahler metrig which cannot be positive definite unlgsbe abelian. All these metrics are
Ricci flat, although many of them are nonflat, and we study the behaviour of its curvature tensor
under deformation.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A pseudo-Kahlefor indefinite Kahley structure(J, £2) on a Lie algebrg consists of a
nondegenerate closed 2-fothand a complex structuré on g which arecompatiblei.e.
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0IXJIY) = (X, V), forall X, Y € g. Here, by a complex structuteon g we mean an
endomorphism of such that/2 = —Id, and without torsion in the sense that the Nijenhuis
tensor of/ vanishes. Given a pseudo-Ké&hler structuke?) ong, there exists an associated
nondegenerate symmetric 2-tengoon g defined byg(X, Y) = (X, JY) for X,Y € g.

We shall say thag is apseudo-Kahler metrion the Lie algebrg.

It is well known[1,7] that if the Lie algebra is nilpotent then the metrig associated
to any compatible pai¢J, £2) cannot be positive definite, unlegsbe abelian. However,
examples of nilpotent Lie algebras with pseudo-Ké&hler metrics abound in the literature,
although as far as we know a general classification result is not available § din6.

In dimension 4 it is already known that, apart from the abelian Lie algebra, only the Lie
algebrafr underlying the Kodaira—Thurston nilmanifoll] possesses compatible pairs
(J, £2); actually, any complex structuteon £t admits a compatible symplectic forsa.

Our goal in this paper is to classify six-dimensional nilpotent Lie algepragmitting
pseudo-Kahler metrics. Since these metrics are in one-to-one correspondence with compat-
ible pairs(J, £2) ong, we introduce the following spaces. For any complex struciiieed
on g, we denote byS.(g, J) the set of all symplectic form& on g which are compatible
with J. Each setSc(g, J) is open in the vector space consisting of all real closed 2-forms
of bidegree(1, 1) with respect ta/, and therefore, if it is nonempty, its dimension can be
computed explicitly. Hence, the existence of a pseudo-Kéhler metrci®equivalent to
prove thatSc(g, J) # @ for someJ € C(g), whereC(g) consists of all complex structures
on the Lie algebra.

The paper is structured as follows. $®ction 2 starting from Salamon’s characteriza-
tion [8] of the existence of complex structures on six-dimensional nilpotent Lie algebras
g, we prove inTheorem 2.%hat the complex structuré underlying any pseudo-Kéhler
metric ong must benilpotentin the sense of3]. Therefore,Sc(g, J) is empty for any
nonnilpotent/ on g. Using this factCorollary 2.8exhibits a nilpotent Lie algebra having
complex structured and symplectic forms?2, but admitting no compatible pait, £2).

To our knowledge, this is the first known example of such a situation on a nilpotent Lie
algebra.

Section 3s devoted to classify six-dimensional nilpotent Lie algebras with complex struc-
turesJ admitting compatible symplectic forns8. The algebras are listed Theorem 3.1
and along its proof we construct explicit pseudo-Kahler metrics when they exist. Our clas-
sification result can be summarized as follows: in dimension § his symplectic forms
and nilpotent complex structures, then there always exists a compatiblg,pjron g.

Since any pseudo-Kéhler metric gis Ricci flat[6], Propositions 3.5-3.1firovide many
explicit examples of Ricci flat pseudo-Riemannian metrics and, even more, many among
these metrics are nonflat as it is shownTimeorem 4.1We also study irBection 4.1the
variation of the curvature tensor along curves consisting of pseudo-Kahler metrics, showing
how a flat metric can be deformed to a nonflat one, and vice versa, on a particular Lie
algebra.

Finally, notice that ifG is a simply connected nilpotent Lie group admitting a lattitef
maximal rank, then any left invariant pseudo-Kahler metricGoimduces a pseudo-Kahler
metric on the compact nilmanifold\ G in a natural way. In fact2 descends to a symplectic
formonI"\ G whichis compatible with the complex structure induced on this quotient. Since
left invariant pseudo-Kéhler metrics an are canonically identified with pseudo-Kahler
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metrics on its Lie algebrg, it suffices to work at the Lie algebra level in order to inves-
tigate some properties of the corresponding metric on the compact nilmanif@d(see
Section 4.Zor more details).

2. On thenilpotency of the complex structure

Let g be a Lie algebra, and denote by] its bracket. Thedescending central series
{g"}k=0 of g is defined inductively by

=9 d=1s

gl k=1
The Lie algebray is said to benilpotentif g = 0 for somex.

A complex structure dn a nilpotent Lie algebrgis an endomorphisni : g — g of the
Lie algebra such that? = —Id, and

[OX. Y] = J[IX Y] + J[X, IV + [X, Y]

forany X, Y € g. Associated ta/, there exists an ascending serfegJ)};>o on the Lie
algebra, defined inductively by

ao(J)) = {0}, () ={X egllX,g] Ca-1(HandPX g] € q-1(N}, =1

If a;(J) = g for somel, then the complex structutgis callednilpotent[3].

There are two special classes of nilpotent complex structures. A complex structure
satisfying DX, JY] = [X, Y] for all X,Y € g, is obviously nilpotent and it is called
abelian

On the other hand, if is complex as a Lie algebra then its canonical complex structure
J satisfies JX, Y] = J[X, Y] forall X,Y € g and itis clearly nilpotent. However, id] it
is proved that any closed 2-form compatible with suchia always degenerate.

In addition to describing the Lie algebgan terms of its bracket[ -], we shall mostly
use the Chevalley—Eilenberg differential d on the difalSince dv(X, Y) = —w([X, Y]),
the two descriptions are equivalent.

When a complex structuré is fixed ong, there is a natural bigraduation induced on
the spaceS\f(‘:(g*) = ®prq=k N1 (g"), where/\{&(g*) denotes the complexification of
Ak(g*). We shall also denote by dAf (g*) — /\ﬁgl(g*) the extension ta\}(g*) of the
Chevalley—Eilenberg differential.

Let g andg’ be Lie algebras endowed with complex structufeand J’, respectively.

A complex isomorphisthetween(g, J) and(g’, J') is an isomorphisna : g — ¢’ of Lie
algebras such thato J = J’ o . The latter condition is equivalent to say thaEextended
to the complexifications, preserves the bidegree.

Itis clear that, ifx : (g, J) — (g’, J') is a complex isomorphism, the® is a symplectic
form ong’ compatible withJ’ if and only if its pullback2 = o*(£2') is a symplectic form
on g compatible withJ. Therefore, the existence problem of compatible pairs is set up to
complex isomorphisms.
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Let J be a complex structure on a nilpotent Lie algebraf real dimension 6. From
Salamon’s pap€8], this is equivalent to the existence of a basis, wp, w3} for g-0 =
AL0(g*) satisfying

dwy =0, w1 A dwy =0, w1 A w2 A dwz = 0.

These conditions imply that the expressions of dw, and doz in terms of{w;, cbj}?:l
must have the form:

dw1 =0,
dwr = A1ow1 A w2 + A13w1 A w3 + Ao A w1+ Apwr A w2 + Ajzwr A @3,
dw3 = B1ow1 A wp + Biawi A w3 + Biiw1 A @1 + Bizw1 A w2 + Biawl A @3

+ B23w2 A w3 + Byjwz A 01 + Bysw2 A w2 + Byzwz A @3 (1)

for some complex coefficients's andB’s. Moreover, the complex structuvds nilpotent if
and only if there is a basis gf*o such that all the coefficient$;», A13, A;3, Aq3, B13, By3,
Bpz andB,3 vanish (see Theorem 12 [#]). In addition,B1> = 0 if and only if J is abelian
according to the previous definition.

Therefore, the nilpotent Lie algebras admitting a complex structure are determined by
the structureequations (1)vhere the coefficientsl’s and B’'s must satisfy those com-
patibility conditions imposed by the Jacobi identity of the corresponding bracket (which
is equivalent to requiring @w,) = d(dwz) = 0) and the nilpotency of the Lie
algebra.

In Lemma 2.1itis proved that, up to complex isomorphism, we can always suppose that
the coefficientsA 5, B3, B2z and B, in (1) vanish.

From now on, let us denote 1, Z», Z3} the basis fog1 o dual to{w1, w2, w3}.

Lemma 2.1. Let J be a complex structure on a nilpotent Lie algefraf dimension 6.
Then the complex structure equations(@f J) can be expressed as

dw1 =0,

dwo = A1ow1 A w2 + A13w1 A w3 + Ajjwr A @1 + Aj3w1 A @3,

dw3 = B1owi A w2 + B1aw1 A w3 + Bjjw1 A @1+ Bizw1 A w2 + Byjw2 A 1
+ Bosw2 A @2,

where the coefficientd’s and B’s are complex numbers satisfying the compatibility con-
ditions imposed by the nilpotency@énd the Jacobi identity of the bracketgf

Proof. Let us first see that the coefficieBbs in Eq. (1) must be zero. In fact, iB>3 does
not vanish then théth bracket §», - - -[Z2, [Z2, Z3]] - - -] = (—B23)*Z3 is nonzero for
anyk > 1, which is in contradiction to the nilpotency gf

A similar argument, but now using the bracket,[ Z3] = —By3Z3 and its com-
plex conjugate %>, Z3] = —B,3Z3, leads to the fact that the nilpotency gfimplies
By = 0.
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Next we show thatifeq. (1)we can also consider th8tz = 0. Firstof all, let us consider
the complex transformation defined by
/ / / P
W) = w1, Wy = w2, w3 = w3 — —wy, (2)

0

whereP, Q € C, andQ # 0. From(1) with B3 = B,z = 0, we get that with respect to
the basidw], w), wj} for g-0 the structure equations become

/
da)1=0

+B a)zAa)l—i—B a)z/\wz,

where we denote by”’s and B”’s the new coefficients. It is easy to check that

, P
Biz =Bz~ Ay ®3)

Now, if B;3 # 0 andA,3 = 0 then from(1) we have [, Z3] = —81323 and [Z1, Z3] =
—Bl323, which imply thatZs, Z3 € g* for anyk > 1, and this is a contradiction to the
nilpotency ofg. Thus, if By3 # 0 thenA,3 # 0 and we can consid¢2) with P = B,z and
Q = A,3. From(3) it follows that the new coefficiens’ . = 0.

Therefore, we can suppose without loss of generality that the coeffidiggit®,3 and
B3 in (1) vanish. Moreover, a direct calculation shows that the conditiampd= 0 is
equivalent to the following relation’s:

(121); A13By; — A;3Bs — |Ap12 =0, (112); A12A;5+ Aj3B12=0,
(122); A13By — Aj3B,5 =0, (113)2 A13A5 + A3B13=0,
(131)2 AppA;z=0.

If A4 does not vanish then conditiéh31), implies A3 = 0, and from(113) we also get
A13 = 0. But this is in contradiction t¢121),. Thus, the coefficienti;5 must be zero.O

In the next two propositions it is proved that eitlisg # 0 or B,; = A3 = 0 imply the
nilpotency of the complex structure.

Proposition 2.2. If in the structure equations given iremma 2.1the coefficienB.; # 0,
then the complex structure J is nilpotent

Proof. Adirectcalculation shows that the conditiofugs = 0 is equivalent to the following
relations:

1 In what follows, we shall use the labej&l), and(jkl), for the coefficients ofo; A wy A & andw; A @k A @y,
respectively, in the equatiorf@, = 0, forv = 2, 3.
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(121)3 A12B57 — AliBZZ — B13B,1 =0, (112)3 A1iBos — AlZBlé =0,

(12)3 A12By — B13By; =0, (113)3  A13By3 + Ag3B,7 =0,
(131)3 A13Byi + AléBlé =0, (123)3 A3By5 =0,
(132)3 A13Byp =0, (212)3 A12B53 =0,
(231)3 AléBZQ =0, (213)3 Al3322 =0.

From (132)3, (231)3 and (212)3 it follows that A1 = A13 = A;3 = 0. SinceA1p = 0
the equality(122)3 implies Byz = 0. Now, from (121)3 we deduced; = 0. Thus, the
structure equations afj, J) are

dw1 =dwy =0,
dws = B1ow1 A w2 + Bijw1 A @1 + Bi3w1 A @2 + Byjwa A @1 + Bozwa A @2

and therefor¢ is nilpotent. O

The next result shows how the coefficients in the structure equations must be chosen in
order to ensure the Jacobi identity of the corresponding bracket.

Lemma2.3. If By = 0in Lemma 2.1then the Jacobi identity is satisfied if and only if
(121); A13By; — AyzByp =0,
(112); A3B12=0,
(113)2 A;3B13=0,
(121)3 A12B,; — B13By; =0,
(1313 A13By; + Ay3B35 =0,
(112)3 A12B;5 =0,
(11:_3)3 A13Blé + A3B,1 =0.

Proposition 2.4. Ifthe coefficientsi ;3 andB.,5 in the structure equations givenliemma 2.1
vanish then J is nilpotent

Proof. First of all, sinced 3 = 0, if we proceed as ihemma 2.1and consider a complex
transformation(2) with P = Bjz and Q = Aj3, then we can suppose without loss of
generality thatB13 = 0.

On the other hand, the coefficiertss and B’s in the structure equations must satisfy
certain relations imposed by the nilpotencyofogether with the conditions bemma 2.3
But now, sinced 3 = B,5 = B13 = 0, these conditions reduce to

(121); A13By =0, (112)3 Ap3B;3=0,
(121)3 A12By; =0, (113)3 A13B;3 =0.

If By5 # 0 or B,; # 0 then these equations imphy, = A13 = 0, and thus the complex
structure/ is clearly nilpotent.
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Therefore, it remains to study the caBg; = B,; = 0, so next we will restrict our
attention to structure equations of the form:

dw1 =0, dwr = A1ow1 A w2 + A13w1 A w3 + Ajjw1 A 1,

dws = Biow1 A w2 + Byjw1 A 01 4)
and we shall show that in this case the nilpotency of the Lie algeionalies the nilpotency
of the complex structurd.

We consider two cases depending on the vanishing of the coefficigim (4). If A13 =0
thenA12 = 0, because otherwise fro() it would follow that thekth Lie bracket:

[Z1,--[Z1,[Z1, Z2]) - -] = (=DA%, 20 + BroA%, 1 Z3) # 0

for anyk, which is in contradiction with the nilpotency @f But if A13 = A12 = 0 thenJ
is nilpotent.

Next, let us supposgi3 # 0. In this case, by multiplying, by 1/A13, we can suppose
A13 = 1. From(4) we get the following brackets:

[Z1, Z3] = —Z>,
[Z1,[Z1, Z3]] = A12Z5 + B12Z3,
[Z1.[Z1,[Z1, Z3]l] = —(A%, + B12)Z2 — A12B12Zs,
(21,121,121, [Z1, Z3]ll] = A12(A2, + 2B12) Zo + B1o(A2, + B12)Zs,

[Z1,[Z1,[21,[2Z1,[Z1, Z3]]]] = —(AS, + 3A%,B12+ BZ,)Zy — A12B12(AT, + 2B12) Zs.
We prove now that ifBj» # 0 then the coefficients af, and Z3 in the latter bracket
do not vanish simultaneously. The coefficient Zf vanishes ifA12 = 0 or A%z =
—2B12; but if A1o = 0 then the coefficient of» is nonzero, and iﬂ%z = —2Bjo then
(21,121, (21,121, (21, Z3]lll] = B2,Z2 # 0.

Therefore, ifB12 does not vanish thegl5 is not zero, which is in contradiction to the

fact that any six-dimensional nilpotent Lie algelprédas step of nilpotency 5. Thus, if

A13 # 0 thenB12 = 0. Moreover,A1, = 0 because otherwig® would be again nonzero.
SoEq. (4)reduce to

dw1 =0, dwr = A13w1 A w3 + Ajjo1 A @1, dwz = Byjw1 A @1
and, interchangingv, with w3, we get again the equations of a nilpotent complex

structure. O

Let g be a nilpotent Lie algebra having a complex structiireand let us denote by
Sc(g, J) the set of all symplectic form& on g which are compatible witti. ThenSc(g, J)
can be identified with

Se(g, ) = Z41(g, ) N W(g), (5)

whereZ1(g, J) is the vector space of all closed rel 1)-forms ong® and)(g) is the set
of 2-forms ong which are nondegenerate. Moreover, it is clear #fat(g, J) is identified
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with Z41(g, 1) N {2 € AV (g")|2 = 2}, whereZh (g, J) = ker{d| \11(4) : ATH(g*) —
A (@)}

Therefore, the seB.(g, J) is an open subset of the vector spackl(g, J), which
eventually could be empty. If there exist compatible symplectic forms, then the dimen-
sion of Sc(g, J) is equal to dimz1(g, J), because the tangent spakteS:(g, J) at any
J-compatible forme is identified toZ11(g, J).

Notice thatg has a pseudo-Kahler metric if and onlyS§f(g, J) # @, for some complex
structureJ on g. So, the nonexistence of pseudo-Kahler metricg @®1a subtle problem,
because in order to prove that there is no compatible(gaie) we must take into account
the whole of the sef(g) of complex structureg on g and prove the nonexistence of
a compatibles2 for any J. In addition, there are nilpotent Lie algebras having complex
structuresJy and J> such that there exist compatible symplectic forms forbut with
Sc(g, J2) = 0.

In the following theorem we prove that, in dimension%(g, J) = @ for any complex
structureJ/ that is not nilpotent.

Theorem 2.5. The complex structure underlying any pseudo-Kahler metric on a six-
dimensional nilpotent Lie algebra is nilpotent

Proof. Let J be a complex structure on a six-dimensional nilpotent Lie alggbitis
sufficient to prove that if/ is not nilpotent then any closed 2-form compatible witts
degenerate. In view dPropositions 2.2 and 2.4 nonnilpotent complex structure can be
obtained only whemB,> = 0 andA, 3 # 0. Let us suppose then that the structure equations
for (g, J) are

dw1 =0,
dwp = A1pw1 A wp + A13wg A w3 + Ajjwr A @1 + Ajzw1 A 03,
dw3 = B1owi A w2 + B1awi A w3 + Bijw1 A w1+ Bzw1 A w2 + Byjw2 A w1,

where the coefficients must guarantee the nilpotengyasfd satisfy the relations given in
Lemma 2.3From(112), in Lemma 2.3t follows that B1> = 0, and from conditiori113),
we deduce thaB13 = 0. Moreover, the nilpotency af implies thatA12 = 0, because
otherwise 1, - - - [Z1,[Z1, Z2]] - - -] = (—A12)¥Z5 +# O for anyk.

Let £2 be a 2-form compatible with, that is,2 € AL1(g). Therefore,

3
2= Z(aja)l +bjw2 + cjw3) A w;j
j=1
for some coefficienta;, b;,c; € C, for j = 1, 2, 3. A direct calculation shows tha&2
Z11(g, J), i.e. d2 = 0, implies the following relation3:
(120)o a3By; —b2A; —b3Byi =0, (1320 brA13—c3By =0,
(122)0 b3sz_ =0, (231)g bZAlé —c3B3 = 0.

2 Here we use the labglki)o for the coefficient ofv; A wy A @; in the equation & = 0.
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Notice that ifA,3B,; — A13B35 = 0, then(113)3 in Lemma 2.3mplies B,; = 0 (because

Az # 0), and thusBy; = 0 by condition(121),. Therefore, in this case the complex

structure/ is nilpotent (it suffices to interchang® with w3 in the equations above).
SinceJ is nonnilpotent, we have necessarily

A13 —B,;
det( o3 _21> #0,

Az =By

so from(132)¢ and(231)g, we conclude that, = ¢3 = 0 if the 2-forms2 is closed.
Moreover, arguing as above, equations&mma 2.3mply that B,; = 0 if and only if
By5 = 0, and in this casd is nilpotent. ThereforeB,5B,; # 0 and the conditionsl21)g
and(122)g are satisfied if and only i3 = b3 = 0.
Finally, sinceaz = b3 = c3 = 0, it is clear that2® = 0, that is,2 must be degener-
ate if it is closed; thusz>(g, J) N V(g) = @ for any nonnilpotent complex structure
ong. O

Corollary 2.6. In dimension 6if J has a compatible symplectic form then J is nilpotent

We conjecture that this result is still true for any dimensian that is: any complex
structure on a nilpotent Lie algebra of dimensionrust be nilpotent in presence of a
compatible symplectic forntCorollary 2.6together withRemark 4.3 give an affirmative
answer fom < 3.

Remark 2.7. Notice that in the proof ofheorem 2.5we have obtained the following
slightly stronger result: If a complex structufgpossesses a compatible closed 2-form (not
necessarily real) thes must be nilpotent.

Following the notation below, the Lie algebhas = (0,0, 12 13, 23, 14 + 25) has
symplectic forms and complex structuf8band, since the centre bjgis one-dimensional,
any complex structure cannot be nilpotgBlt. From Corollary 2.6 given any symplectic
form £2 on b6, there is no complex structureon hog compatible withe?, that is as in the
following corollary.

Corollary 2.8. Any Lie algebrag isomorphic tohzs = (0, 0,12, 13, 23, 14 + 25) has
complex and symplectic structurdsut there exists no pseudo-Kéhler metric gni.e.
Sc(g, J) =@ foranyJ € C(g).

As far as we know, this is the first known example of a nilpotent Lie algebra having such
a property.

3. Theclassification

Inthis section, we classify six-dimensional nilpotent Lie algebras admitting pseudo-Kahler
metrics. More precisely, we shall prove the following result.
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Theorem 3.1. Letg be a(nonabelian nilpotent Lie algebra of dimension 6. Thenpos-
sesses a compatible pais, £2) if and only ifg is isomorphic to one of the following Lie
algebras

h2=1(0,0,0,0,12 34),
ha=(0,0,0,0,12 14+ 23),

hs =(0,0,0,0,13+ 42 14+ 23),
he = (0,0,0,0,12 13),

h7 =(0,0,0, 12 13, 23),

he =(0,0,0,0,0,12),
ho=(0,0,0,0, 12 14+ 25),
h10=(0,0,0, 12,13, 14),
h11=(0,0,0,12 13 14+ 23),
h12=(0,0,0,12 13, 24),

h13= (0,0, 0,12 13+ 14, 24),
h14=(0,0,0, 12 14, 13+ 42),
h1s = (0,0,0,12, 13+ 42 14+ 23).

Notation Some explanation about this notation is needed. In the list above, we have
combined the notatiol; of the table given if2] and the structure description of the
Lie algebras as it appears [8]. For examplefz = (0,0, 0, 0, 12, 34) means that there
is a basis{Xy, ..., Xg} for the Lie algebra in terms of which the only nonzero bracket
relations are X1, X2] = —Xs and [X3, X4] = —Xe. Equivalently, in terms of the dual
basis{ai, ..., ag} the Chevalley—Eilenberg differential d is given by

dal = dotz = da3 = da4 =0, dot5 = o1 N Qa, dote, = o3 N\ 04.

For more information on the ascending series, Betti numbers or the dimension of the set of
symplectic forms on each Lie algebra, $263].

It follows from [2] that any Lie algebra admitting a nilpotent complex structure must
be isomorphic tdj, for somek < 16. On the other hand, among these algebras, only
hs = (0,0,0,0,0, 12+34) andhis = (0, 0, 0, 12, 14, 24) do not possess symplectic forms.
ThereforeTheorem 3.ktates that these two are the only algebras not having pseudo-Kahler
metrics. Thus, the classification result can be summarized as follows.

Corollary 3.2. In dimension 6the Lie algebrgg has compatible pairsJ/, £2) if and only if
it admits both symplectic and nilpotent complex structures

Remark 3.3. In [5], we have classified six-dimensional nilpotent Lie algebras having
pseudo-Kéahler metrics whose underlying complex structure is abeliafhsorem 3.1
extends our previous results. Also, it completes some partial results on the existence of
pseudo-Kahler metrics given [6, p. 18]
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Our proof of Theorem 3.1will consist in a case by case study, in which we construct
explicit pseudo-Kéahler metrics when they exist. This is detailgéropositions 3.5-3.10

First of all, by Theorem 2.5t suffices to restrict our attention to nilpotent complex
structures in order to obtain such classification. Thus, along this sedtiatil denote a
nilpotentcomplex structure on a nilpotent Lie algehraf dimension 6. Therefore, the
(complex) structure equations @f, J) can always be expressed as

dw; =0, dwy = Ajjo1 A @1,

dws = Biow1 A w2 + Biiw1 A @1 + Bizw1 A @2 + Byjw2 A w1 + Boswz A @2,
where the coefficientd’s and B's are complex numbers satisfying those restrictions im-
posed by the Jacobi identity of the Lie brackegoDbserve that the nilpotency gfollows
from the form of these equations. Also, notice ttias abelian if and only ifB12 = 0.

Let £2 be a 2-form ory of type (1, 1) with respect ta/. Then
3
= Z(aja)l +bjwy + cjw3z) A w;j,
j=1

whereaj, b;,c; € C. Itis clear that$2 is a reql form, i.e2 = 2, if _and only if these
coefficients satisf$, = —ap, c1 = —as, co = —b3,anda1 +a1 = bo+b2 = c3+c3 =0,
that is,a1, b2, c3 are purely imaginary.

Lemma3.4. LetJbe anilpotent complex structure grwith structure equations as above.
Denote byV(g, J) the real vector space of allaz, ibs, ic3, az, as, b3) € R3 x C2 satisfying
the conditions

(121)o a3By — bpA,; — b3Byj — azB12 =0,

(12?)0 a3By; — b3B,j — b3B12 = 0,

(123)0 ¢3B12=0,

(131)o 1;3A11 — 631_311 =0, (6)

(132)0 ¢3B,; =0,

(231 c¢3B53=0,

(232)0 63322 =0.
If the setSc(g, J) of compatible symplectic forms is nonemghendim Sc(g, J) = dim
V(g, J).

Proof. Since dimSc(g, J) = dim Z1(g, J), it suffices to check that the real vector spaces
Z11(g, J) andV(g, J) have the same dimension. But a simple calculation using the structure
equations of/ above shows that a redl, 1)-form £2 is closed if and only if condition&5)

hold. O

On the other hand, the nondegeneratiom2of.e. 23 = 0, is equivalent to

a1 a» as
det| —az b2 b3 | #0. (7)
—as —153 c3
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Notice that if / and £2 are compatible, then we can define a pseudo-Kéhler mgtoig
g(X,Y) = £2(X,JY), which in terms of the 6-tupléas, az, as, bo, bz, c3) and the basis
{wj, 5)]}?:1 is given by

g = —i(a1w1#1 + brwotwr + cawstws + arwiftivy — arwrttwl + azwi#s
— azw3atw1 + bawotwz — l_)3a)3#5)2), (8)

where # denotes the symmetric product.

Proposition 3.5. There are pseudo-Kahler metrics dp, h4 andhg. More precisely

(i) The Lie algebra, = (0,0, 0, 0, 12, 34) has a complex structure J such that its set of
compatible symplectic forn&:(h2, J) is six-dimensional

(i) There are complex structures J o= (0, 0,0, 0, 12, 14+ 23) andhg = (0, 0, 0, O,
12, 13) whose sets of compatible symplectic forms have dimension 5

Proof. Let us consider complex equations of the form:
dw1 = dwy = 0, dwz = w1 A wp + w1 A w2 + Byjw2 A 1. (9)

First, we shall see that these equations define a complex struoturg, whenB,; = 1. In
fact, if we writew1 = B1+i82, w2 = B3+ iB4 andws = Bs + iBs, then the (real) structure
equations of the underlying Lie algebra are

d1 =dp2=dB3=dps =0, dBs = B1 A B3 — B2 A Ba,
dBe = —B1 A Ba+ 362 A Ba.

Since d—+/385 + ) = (—B1+ v/32) A (V33 + Ba), and d—+/3B5 — fs) = (—B1 —
V3B2) A (V/3B3 — Ba), if we consider the (real) transformation:

a1 = —p1+ /382, a2 =3B3+ fa, az=—P1—3h2
oy = \/éﬂs — Ba, o5 = —«/:_31,35 + B, og = _“/5",35 — Bss

then dv1 = day = dagz = day = 0,das = a1 A a2, dag = a3 A a4, €quations which
correspond to the Lie algebta. On the other hand, fror6) and (9)it follows that 2 is
closed if and only ifz3 — a3 = 0, b3 4+ b3 = 0 andcz = 0. Moreover,$2 is nondegenerate
if and only if azba(as + a2) # |az|?bs + |bs|?a1. Therefore Sc(h2, J) is nonempty and
Lemma 3.4mplies that dimS¢(h2, J) = 6. This completes the proof of (i).

Now, if B,; = 2inEq. (9)and we definey, ..., ag by as+ico = w1, a3+ 2ie1 = 4w>
andas + iag = wsz, then a simple calculation shows that, . .., a4 are closed, ds =
a1 A ag and dvg = @1 A aq + a2 A az. Therefore, the equations above define a complex
structureJ on h4 when B,; = 2. Moreover, from(6) we have that? is closed if and only
if c3 = 0, a3 = az andb3z = —2b3, which impliesbz3 = 0. The nondegeneration & is
equivalent tdaz|?by # 0. Thus,Sc(ha, J) # ¥ and dimSc(h4, J) = 5 by Lemma 3.4

Finally, let us see thdq. (9)with B,; = 0 define a complex structureon he; in fact, if
we considetry, . . ., ag given byas+iaz = w1, a1 +iag = —2wp andus+iag = w3, thenit
is easy to check th#g is the underlying Lie algebra on whichis defined. Moreover, since
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it follows from (6) and (7)that a compatible 2-forn®2 is closed and nondegenerate if and
onlyif b3 = c3 = 0, as = az and|az|?b, # 0, thisimplies thaS.(he, J) has dimension 5

It is worthy to remark thalj; andh4 admit abelian complex structures, but none of them
admits compatible symplectic form (s for details).

Proposition 3.6. There are abelian complex structures Jion= (0, 0, 0, 0, 13+ 42, 14+
23) having compatible symplectic forms. Moreqwary such J satisfiedim Sc(hs, J) = 6.

Proof. In [5], it is proved that any abelian complex structurehgrhaving compatible?
can be expressed, up to complex transformation, by the structure equations:

dw1 = dwo =0, dws = w1 A ©2.

Now (6) implies that d2 = 0 if and only ifaz = c3 = 0. Moreover,£22 # 0 is equivalent
to |b3|%a1 # 0. FromLemma 3.4t follows that the seS¢(bs, J) is six-dimensional for any
such abelian. O

Notice thaths is the Lie algebra underlying the lwasawa nilmanifold, so this algebra has
a complex structurd such that JX Y] = J[X, Y] forall X,Y € bs. In [4] it is proved
thatSc(g, J) = ¥ for any complex structurd satisfying this condition on a nilpotent Lie
algebrag.

It is worthy to remark thabs has also abelian complex structures which do not possess
compatible symplectic forrib].

Proposition 3.7. Any complex structure J djg = (0, 0, 0, 0, 0, 12) is abelian and the set
of compatible symplectic forms has dimension 6 for any such J

Proof. Since the first Betti number dfg is 5, any complex structure must be abelian, an
observation already made [i8] (see also Proposition 5.2 j4]). Moreover, it is proved in
[5] that, up to a complex transformation, the structure equations of amys reduce to

dw1 = dwo = 0, dwz = w1 A @1.

So, a compatible forns2 is closed if and only ifb3 = ¢3 = 0, and the nondegenera-
tion of £2 is equivalent tabs|as|? # O; this implies thatS¢(hs, J) is six-dimensional by
Lemma 3.4 O

Proposition 3.8. Any complex structure J dip = (0, 0,0, 0, 12, 14+ 25) is abelian and
has a compatible symplectic form. Moreov@im S¢(ho, J) = 4 for any J

Proof. From the proof oTheorem 2.5itis easy to see that a nonnilpotent complex structure
cannot exist on a six-dimensional nilpotent Lie algebra whose first Betti number equals 4.
Therefore, any complex structuyeon g is necessarily nilpotent, becaugghas first Betti
number equal to 4. Moreover, ] (Proposition 5.3) it is proved that any nilpotent complex
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structureJ onhg is abelian, and if5] it is shown that, up to a complex transformation, the
structure equations of anjon hg are

dw1 =0, dwr = w1 A @1, dwz = w1 A w2 + Byjwo A 1,

where |B,i| = 1. Now, any real 2-form2 compatible withJ is closed if and only if
b3 = c3 = 0 andaz = b,. Moreover,$2 is nondegenerate if and onlydp # 0. Thus, for

any J on by, the space of compatible symplectic forms is four-dimensional. O
Proposition 3.9. The Lie algebrag7 andbhy, . .., h14 admit pseudo-Kahler metrics. More
precisely

(i) The Lie algebrag7 = (0,0, 0, 12,13 23) andhi4 = (0,0, 0, 12, 14, 13+ 42) have
a complex structure admitting a five-dimensional set of compatible symplectic forms
(ii) The Lie algebragipo = (0,0,0, 12,13, 14), h11 = (0,0,0, 12,13 14+ 23), h12 =
(0,0,0,12 13 24 andhi3 = (0,0, 0,12 13+ 14, 24) possess a complex structure
having a four-dimensional set of compatible symplectic forms

Proof. Let us consider the complex equations:

dw1 =0, dwr = w1 A @1, dwz = w1 A w2 + Bisw1 A w2 + Byjw2 A w1,
whereB5 = r +it, By = s —it, forr,s,t € R, that is, ImBy; = —Im By5. Now, we
defineas, ..., ag by a1 + iz = w1, —2a3 — 2ieg = wp and—4as — dieg = w3. A simple

calculation shows that

dotl = dotz = dOl3 =0, dOl4=Ol1/\0l2,
1+r—s 1-r+s
dos = —————ao1 Aoz — ———a2 A ag,
2 2
1-r—s 1+r+s
dog = tag A a3z + Tal/\om—l— Tozz/\ag—i—tozz/\om. (20)

Let us suppose firsk;5 = 1 andB,; = 0. From(10) we get directly the Lie algebry in
this case.

On the other hand, let be the complex structure defined By; = 1 andB,; = 2. It
follows from (10) that dxg = a1 A a2, das = —a2 A ag and dvg = —a1 A ag4 + 202 A 3.
Now, if we consider the change of bagis = —a2, f2 = a1, f3 = —20z andg; = «; for
j =4,5, 6, then we get that the Lie algebra underlyihig (0, 0, 0, 12, 14, 13+ 42) = h14.

From (6) we have that 2 = 0 if and only if b3 = ¢3 = 0 andb2 = a3 — a3z. Moreover,
23 £ 0if and only if |az|?(az — a3) # 0. Thus, the set of compatible symplectic forms is
nonempty and has dimension 5, bgmma 3.4 This completes the proof of (i).

Now, if By = 0, B,; = —1 then from(10) we get that the underlying Lie algebra is
h1o. Moreover, the Lie algebriy is obtained wherB,5 = 2 andB,; = 1, which follows
directly from(10) by multiplying @3 andas by —2, and changing the sign ag.

If Bj> = 14+iandB,; = —i, then we can consider the change of b#gis= as+oa3, fs =
as —as, Bj = «j for j # 4,6, and it follows from(10) that 81, B2, B3 are closed, fs =
B1 A B2,dBs = B1 A Bz and dBs = B2 A Ba, that is, the Lie algebra ig;».
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If Bj> = —1+iandB,; = —i, then fromEq. (10)we get that d5s = —a2 A ag and
dag = a1 A a3z + a1 A ag + a2 A agq. Thus, if we consider the change of basis given by
Bs = as + g, fs = —as, B = «j for j # 5, 6, then we conclude that the underlying Lie
algebra igh13.

Now, from (6) we have thatz = 0 becauseB1> = 1 in any case. Also, fronil3l)o
in (6) we getbs = 0, because8;; = 0 andA; = 1. It remains to consider the equation
(121)g, that is,b, = agBy5 — az. Sinceby + b2 = 0, the coefficientzz must satisfy
ag(Bli — 1) +az(B;3 — 1) =0.SinceB; = 0,2, 14 ior —1+1i, the latter equation is
nontrivial.

Finally, in order to complete the proof of (ii), notice th&® # 0 if and only if
|a3|2(a31_31§ — asz) # 0. Therefore, the set of compatible symplectic forms is nonempty
and has dimension 4 hyemma 3.4 O

Proposition 3.10. There are abelian complex structures J pry = (0,0,0, 12, 13 +
42, 14 + 23) having compatible symplectic forms. Moregwdim S¢(h1s, J) = 4 for any
such J

Proof. Itis proved in[5] that any abelian complex structure by having compatible?
is given, up to complex isomorphism, by the equations:

dw1 =0, dwr = w1 A @1, dws = w1 A @2 + Byjw2 A 1,

where|B,j| # 1. Now, from(6) and (7)it follows thats2 is closed and nondegenerate if and
only if b3 = ¢3 = 0 andaz = by # 0, which implies thatS¢(h1s, J) is four-dimensional
for any such an abeliash. O

Remark 3.11. Let us remark thaii5 possesses abelian complex structurest admitting
compatibles2. In fact, in[5] it is shown that any such &is, up to isomorphism, defined
by: dw1 = 0, dwz = w1 A w1, w3z = w2 A @1.

4. Curvature of pseudo-K @hler metrics

Since any pseudo-Kahler metric on a nilpotent Lie algebra is Ricdiflabur goal in
this section is to show how the curvature tengoraries when we perform a deformation
of the metric.
Next we recall some basic definitions, adapted to our setting. First of all, since we are
working at the level of a Lie algebrga the Koszul formula for the Levi—Civita connection
V of a metricg, extended to the complexificatigft of the Lie algebra, reduces to

2¢(VxY, D) =g([X,Y].T) — g(¥. T]. X) + g([T. X]. Y)

for X, Y, T e g*.

Letus consider a pseudo-Kahler megrigiven by(8) with respectto the basfe1, w2, w3}
for g10. We shall expres¥ in terms of its dual basi§Z1, Z», Z3} for g1,0 and its com-
plex conjugate. Notice tha¥, Z; = V7 Z; andVz Z; = V; Z;, because is real,
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therefore it suffices to computéz, Z; andVvy, Z;, for j, k = 1,2, 3. Moreovery(g, J) is a
pseudo-Kahler structure, 86/ = 0, i.e.Vx(JY) = J(VxY), for X, Y e gC. This implies
VxY € g1,0, WheneverY e gj . In particular,Vy Z; has type(1, 0) with respect to the
complex structure, fojy = 1, 2, 3.

We shall also compute the curvature tenkasf g, which is given by

Rxyuv=g(Vix.n)U — [Vx, Vy]U, V)

for X,Y,U,V e g, in terms of the basi$Z;, Zj}le for gC. Notice that ifU € g1
then Rxyuv is zero for anyV € g10. By the symmetries of the curvature and the fact
that Rz357 = Rxyuw we conclude thag is nonflat if and only ifRy3, # O for some
X,Y, U,V € g10. Therefore, to study the flatness of a megigiven by(8) it suffices to
calculater 7 7,7, -

It is clear that the existence of flat or nonflat pseudo-Ké&hler metrics on a Lie algebra
g is a property which is invariant under complex isomorphisms, in the following sense.
Let J, J' be two isomorphic complex structures gnThen, there is a nonflat (resp. flat)
pseudo-Kéahler metric og compatible withJ if and only if there is a nonflat (resp. flat)
pseudo-Kahler metric om compatible withJ'.

From now on, we restrict our attention to abelian complex structurethat is to
pseudo-Kahler metrics whose underlying complex structure is abelian. In dimension 6,
there are four (nonisomorphic) Lie algebras having such a pseudo-Kéahler metaimely
bs, bs, ho andhs (sed5] for details). We shall prove next that the flatnesg ofly depends
on its underlying complex structure.

Theorem 4.1. Let g be a(nonabelian nilpotent Lie algebra of dimension 6, and g a
pseudo-Kéahler metric og whose underlying complex structure is abelian. Thae Lie
algebrag is isomorphic tdys, bs, hg or h15. Moreover

(i) Any such a metric g obg is flat
(i) Any metric g on the Lie algebrdg andhg is Ricci flat but nonflat
(iii) The Lie algebréyis has both flat and Ricci flat nonflat metrics g. Moregveted an
abelian complex structure J dns, the corresponding pseudo-Kéhler metrics are all
either flat or Ricci flat nonflat

Proof. As it has been proved iRroposition 3.7any complex structure dyg is abelian and
can be expressed, up to complex isomorphism, by the equations:

dw1 = dwy = 0, dwz = w1 A @1.

The corresponding pseudo-Kahler metgese given by(8) with b3 = ¢3 = 0 andag, by #
0. Now direct calculations in terms of the bafis , Z,, Z3}, dual to the basifw1, w2, w3},
show that the Levi—Civita connection is given, up to complex conjugation, by

as
V7,21 = aZ?,, Vzlzl =73

with the rest vanishing. Now it is easy to check that the curvature tehsdrany such a
metric g vanishes identically. This completes the proof of (i).
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Next let us prove (ii) fobhs. FromProposition 3.6we know that any two abelian complex
structures orhs having a compatible pseudo-Kahler metric are isomorphic, and can be
expressed by the equations:

dw1 = dwo =0, dws = w1 A ©2. (1))

The corresponding metrigsgiven by(8) satisfyas = ¢3 = 0 andas, b3 # 0. A direct cal-
culation in terms of the bas{¥1, Z», Z3}, dual to{w1, w2, w3}, shows that the Levi—Civita
connection is given, up to complex conjugation, by

—b3 azbs

Vz,22 = — 271 — —Z3, szzl =73

ai aibs
with the rest vanishing. Now it is easy to check that the only nonzero component of the
curvature tensor is

R o ilbal?
ZzZzZzZz__l

ai
Since 1 and|bs| are nonzero real numbers for any pseudo-Kahler mgtiits curvature
does not vanish. Let us notice that, for the Lie algéaréf b2 # 0 then the two-dimensional
subspace generated B and Z, is nondegenerate and has nonzero sectional curvature,
while all the other sectional curvatures vanish.

Finally, we prove (ii) forhg, and (iii). As it has been proved iRroposition 3.8any
complex structure ohyg is abelian and can be expressed, up to complex isomorphism, by
the equations:

dwy =0, dwr = w1 A @1, dwz = w1 A w2 + Byjw2 A 1, (12)

where|B,;| = 1. On the other hand, frorRroposition 3.10ve know that any abelian
complex structure ohys having compatible pseudo-Kahler metrics is given, up to complex
isomorphism, by the same equations, but With;| # 1. In both cases, the corresponding
metricsg are given by(8) and satisfyb3 = ¢3 = 0, andaz = b, # 0.

A straightforward computation in terms of the bafis, Z», Z3} dual to{w1, w2, w3}
shows that the Levi—Civita connection is given, up to complex conjugation, by
az + c_lszi as
——=1Z3, V7,22 =Vz,Z1 = —

V7,21 = _BziZZ + Z3,

Vzlzl = Zo, Vzlzz = B,iZ3, szzl =73
with the rest vanishing. Using these expressions, it is easy to check that the components of
the curvature tensak are all zero, except possibly

R21212121 = IEI3(3 - |Bzi|2)

Therefore, the metric is flat if and only iB,1|? = 3, becauses is nonzero.
Since the underlying Lie algebrafs if and only if | B,7| = 1, we conclude (ii) fohg.
Finally, if | B,7| = +/3 then any pseudo-Kéahler metric associated to the complex structure
defined by(12) is flat, and if| B,;| # 1, V/3, then the pseudo-Kéhler metrics are nonflat.
This proves (iii).
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Again, we must notice that in both cases, fgrandbss, if the metric is nonflat and
a1 # 0 then the two-dimensional subspace generatethtandZ; is nondegenerate and it
is the only with nonzero sectional curvature. O

In [6] the authors define a pseudo-Ké&hler metridygmvhose underlying complex struc-
ture is abelian, and which is nonflat; our result above says that this happens for any such a
metric.

FromPropositions 3.7 and 3.&ny complex structure dyg andbhg is abelian. Therefore
we have the following corollary.

Corollary 4.2. Any pseudo-Kahler metric on the Lie algebia is flat whereas any
pseudo-Kéahler metric ohyg is nonflat

Remark 4.3. In dimension 4, there is (up to isomorphism) only one nonabelian nilpotent
Lie algebra having complex structures. This Lie algebra, which we denof by the

one underlying the well-known Kodaira—Thurston manif§d. It is easy to prove that
any complex structurd on £t can be expressed by the complex equatians ¢ 0 and

dws = w1 A @1, SO such aJ is always abelian. Now, a direct calculation shows that
dim Sc(Rt, J) = 3, and any pseudo-Kéhler metgon £t is given by

g = —i(arw1#tivr + apwitkwr — arwottivr),

whereas; € C — {0} and ir; € R. Itis easy to check that all these metrics are flat. Notice
that the six-dimensional Lie algebbg is a trivial extension oR:.

In the table below, we show the dimension of the set of pseudo-Kéhler metrics with abelian
underlying complex structure on nilpotent Lie algebras, together with information on their
curvature:

Pseudo-Kahler metrics with abelian in dimensior 6

Algebra Structure ding, Ric R

a2k (0, Z.,0) k2 0 0

At (0,0,0,12) 3 0 0

bs (0,0,0,0,13+ 42, 14+ 23) 6 0 £0
hg = At x a? (0,0,0,0,0,12) 6 0 0

ho (0,0,0,0,12 14+ 25) 4 0 £0
h1s (0,0,0,12,13+ 42, 14+ 23 4 0 0,#0

Remark 4.4. There are nonflat pseudo-Ké&hler metrics whose underlying complex structure
is nonabelian. For example, let us consider the Lie alggpraith the complex structure

J defined byEq. (9)with B,; = 1. From the proof oProposition 3.5any pseudo-Kahler
metric g on h compatible withJ is given by(8) with az = a3, b3 = —b3, c3 = 0 and

w = (a3)2bo— (b3)%a1—azba(az+a») # 0. Adirect calculation shows that the components
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Ry.7,2,2;, (=12 of the curvature tensak of g are

—i(ag) _ —ia)?
—

RZ]_ZlZlZ]_ - w ’ Z2ZoZ2Z> —

Sinceaz andbz cannot vanish simultaneously, we conclude that any pseudo-Kahler metric
on hz compatible with the nilpotent (nonabelian) complex structlie nonflat.

4.1. Deformation of pseudo-Kéahler metrics

Here we show how to construct curves of pseudo-Kahler metrics and study the variation
of the curvature tensor of these metrics when we move along the curves. According to
Theorem 4.1we shall only consider the Lie algelygs, although similar constructions can
be done on any of the remaining algebra3reorem 3.1

Let {X1, ..., Xg} be the basis foh15 for which the nonzero defining bracket relations
are

[X1, Xo] = —X4, —[X1, X3] = [X2, X4] = X5,
[X1, X4] = [X2, X3] = —Xe.

Let f : I — R be a continuous function defined on some connected intérgaR such
that f(r) # £1, for allz € 1. We define the almost complex structukeon h15 given by

ro 1 0 O 0 0 7
-1 0 0 O 0 0
0O 0 0 -1 0 0
J,=| 0 01 0 0 0
0 00 o J0+1
fn-1
1- 70
0O O —_—
L 1+ £ i
for eachr € 1.

Now, if {a1, ..., ag} denotesthe basis f@15)* dualto{ X1, . . ., Xg}, thenthgl, 0)-forms
w1 = a1 — a2, w2 = 203 + 2iag, andwf = 2(f(1) — Das — 2i( f(r) + Dae constitute a
basis for(b15),1’°, and the complex structure equations are

dw1 =0, dwr = w1 A @1, da)g = f(Hw1 A w2 + w2 A @1. (13)

This shows that/; is abelian, and so integrable, for each 1.

Since A;; = B,j = 1, B;5 = f(1 and the remaining coefficients all vanish,
Proposition 3.1GndRemark 3.1limply that J, has compatible symplectic forms if and
only if f(#) # 0. Moreover, in this case conditiori§) and (7)imply b3 = ¢3 = 0 and
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bo = f(H)asz # 0, and from(8) it follows that the pseudo-Kéahler metrics are

8x,y,ns,t = raaftay + raxfon + dsastas + dsagttas + dyarfaz — dxoifoy

n-—1 n+1
+ 4s f(f)(t) arftas — dxarttas — dyaottas + 4s 240 ;L artag, (14)
wherer = —ia1, x +iy = ap ands = —iby, thatis,x, y, r, s € R ands # 0. Notice that

gx.y.rst(X,Y) = 0foranyX, Y in the centre of the Lie algebra.
On the other hand, it is easy to check that the corresponding symplectic forms are given

by

fm+1
f®

o2 A as + 8saz A g,

2y y st =—2ra1 Aoz + 4xay Aoz + 4yos Aag — 4s

fn -1
[

o1 N\ Qg

+ 4dyas A a3z — dxaz A agq + 4s

wherex, y, r, s € R ands, f(r) are nonzero.

Proposition 4.5. Suppose thaf(r) # 0, +1forall r € I, and letx, y,r,s : I — R be
continuous functions such thdt) is nonzero for alk € 1. Then the curvature of any metric
inthe curveg; = gx),y(.r0,s0.1> t € 1, of pseudo-Kahler metrics given bi4) on the Lie
algebrahis satisfies

@) If | A(D]| C (1, 00), then any metric in the curvg is nonflat
(i) 1f |£(D| C (0, 1) then g, is nonflat if and only iff(r) # +(+/3/3).

All'the complex structureg in case (i) induce the same orientationipm, which is opposite
to the orientation induced by any complex structure in (ii)

Proof. It follows directly from the proof of (iii) inTheorem 4.1In fact, if we normalize
the coefficients if13) in order to get equations of the for(h2), then the new coefficient
B,j is equal to ¥£(r), and the only eventually nonvanishing component of the curvature
is equal tas() (3 (12 — 1)/ f(£)2. Therefore, the metrig, is flat if and only if f(r)2 = 1/3.
Finally, it is easy to check that the orientation form which correspondsi®given by

1+ f()
1-f®

a1 A a2 A3 A agq A as A dg. O

Particular examples of curves of pseudo-Kahler metrics along of which the curvature has
a special behaviour are the following:

(1) Let us consider(r) = (+/3/3) sint, for ¢ € R. Sincef(r) # +1, we have an abelian
complex structurd; onhysforall ¢+ € R. (Notice that/; has no compatible symplectic
form if and only if f(r) = 0, i.e.t = km, k € Z.) On the other hand, in view of (ii) in
Proposition 4.5if t = (2k + 1)n/2, k € Z, then f(r) = ++/3/3 and the associated
metric g, is flat. Finally, ift # kn, (2k + L)wr/2, for anyk € Z, then the metrig; is
nonflat.
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(2) Consider nowf(r) = (2+ cosr)/4, fort € R. Since the image of is contained in the
closed interval [14, 3/4], in particularf(¢) # 0, £1, and therefore the corresponding
complex structurd; has a compatible metrig, for all 1 € R. Moreover, there is an
infinite number of isolated's such thatf(r) = v/3/3 € [1/4, 3/4], so we conclude
from Proposition 4.5hat the flatness of the metrig changes along the curve.

(3) The only eventually nonvanishing component of the curvaRa@f g, takes the value
s(BD* = 1)/f(3. So, if | f(D)] C (1, 00) and we take () = f(1)/(3f(H)? - 1),
then any metrig, is nonflat and the curvatu® does not vary along the curve. In an
analogous way, if for example the functigisatisfiesf(r) c (0, +/3/3), forallz € I,
then we get the same behaviour as before, but now the orientation induggdsby
opposite.

Finally, we notice that in (1) and (2) above the function®), y(z), »(r) ands(¢) can
be chosen so that the resulting curygsbe periodic. In (3) we can also take suitable
f(@), x(¥), y(¢) andr(z) in order to construct a periodic curve of pseudo-K&hler metrics.

4.2. Passing to the Lie group

We finish this paper by showing how one can give explicitly complex coordinates (as
a complex manifold) on a nilpotent Lie group, and then on the associated nilmanifold,
starting from our knowledge of the complex structure on its Lie algebra. This is an standard
procedure, so we only develop in detail two exampesindh 15 endowed with the complex
structure given by11) and (12)respectively.

Let us start fromEq. (11) and denote by the complex structure on the Lie algebra
bs defined by these equations. We denote alsd llye associated left invariant complex
structure on the simply connected nilpotent Lie graigpwhose Lie algebra igs. In order
to find a representation of the complex manifédgs, J), we proceed as follows.

First, by integrating the structure equations we obtain

w1 = du, w2 = dv, w3 =dw —vdu

for some (global) complex functions v, w on Gs.
Next, by using thab; is leftinvariant forj = 1, 2, 3, one can deduce that left translation
L,b,c) by an element of complex coordinates b, c) is given by

uoLgpe =u-+a, voLwpe =v+D, wo Lp,e) = w + bu + c.

Thus, the complex manifol@Gs, J) can be realized as the Lie group of complex matrices:

1 v w
(Gs, J) = 0 1 u|llu,v,weC
0 0 1

Now, in order to construct a compact complex nilmanifold that corresponds to the complex
equations (11)it suffices to take the quotient 6fs by the subgroug™ consisting of those
matrices whose entridg, v, w} are Gaussian integers.
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It is worthy to compare this realization with the lwasawa manifold (whose underlying
real Lie algebra is alss), which may be described as a similar quotient of the complex
Heisenberg group.

We can proceed in an analogous way with the complgxations (12)Let G415 be the
simply connected nilpotent Lie group whose Lie algebrhiig and denote by the left
invariant complex structure defined f2) on G15. By integrating these equations, we get

w1 = du, w2 = dv — i du, a)g:dw—Bziﬁdv+<%Bziﬁ2+uﬁ—f)) du
for some global complex functions v, w on (G1s, J). Moreover, sincey; is left invariant
for j = 1, 2, 3, the left translatiorL 4 ., by an element of complex coordinates b, c)

is given by

uoL@pe=u+a, vo Lgpe =v+au+b,
o Lipe = w+ Bygav — Jau? + (§Bya® — aa+b) u+ec. (15)

Therefore, we can realize the complex manifoi@;s, J) as the Lie group of complex
matrices:

1 Byt —3it U—uil + 3Byiu® w
0o 1 0 i v
(G5, =310 0O 1 ] u? | lu,v,weC
0 0 0 1 u
0 0 0 0 1

If we take the quotient of515 by the subgroup™ consisting of those matrices whose
entries{u, v, w} are Gaussian integers, then we obtain a compact complex nilmanifold that
corresponds to the complexquations (12)

If B,; = 1/f(r) then one obtains a realizatiqi™\G1s, J;) of the compact complex
nilmanifolds which correspond to the deformation giverserction 4.1

Finally, notice that whery is abelian, the compact complex nilmanifold has Lefschetz
complex type(l, 0), in the sense d#].
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